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Prelude:	Buzzword	Bullshit	Bingo	
	
Buzzword	[People	not	understanding	each	other]	

	
<something>	

	
[Babel	tower,	

https://en.wikipedia.org/wiki/Tower_of_Babel#/media/File:Pieter_Bruegel_the_Elder_-

_The_Tower_of_Babel_(Vienna)_-_Google_Art_Project.jpg]	

	
	
The	political	game	[parliament]	
	
	
Data	Science	vs	Machine	Learning	

	
clarify	term	"data	science"	[slides	from	intro	lecture]	
	
data	science	pipeline	

	
where	is	data	management	in	that	pipeline?	

	

similarities	with	DWH	

	

show	different	topics	

	
mention	projects,	
	
	 DAWN	
	 	
	 HoloClean	
	 	
	 Spark,	Flink	
	 	
	 tons	of	exciting	work	going	on	at	this	workshop	and	aiDM,	thumbs	up,	guys!	
	 	
	



	
1.)	opportunities	for	doing	research	at	the	intersection	of	<something>	and	data	

management,	

	
Software	2.0,	Andrey	Karpathy	
	
Where	this	leads	to	is:	
	
f(X)	=	Y	

	
software	is	many	of	those	functions	
	
RNNs	are	turing	complete	
	
In	principle	any	function	could	be	learned	by	some	model	
	
In	principle…	
	
which	are	suitable	functions	to	investigate?	
	
f(X)	=	Y	

	

f("SELECT	*	FROM	...")	=	[table]	

	

f("SELECT	*	FROM	...")	=	[cost	estimate]	

	

f("SELECT	*	FROM	...")	=	{suitable	indexes}	

	

f("SELECT	*	FROM	A",	"SELECT	*	FROM	B",	"SELECT	*	FROM	...")	=	{suitable	indexes}	

	

f("SELECT	*	FROM	...")	=	[LLVM	bit	code]	

	
basically,	any	language	translation	
	
Software	2.0:	finding	out	which	functions	to	replace	with	learned	functions	
	
I	briefly	spoke	about	this	in	my	VLDB	2017	keynote	[title	slide]	
	
suitable	candidates	for	functions	are	in	general:	
	
everything	that	is	currently	done	by	humans:	

	
-	data	cleaning	[Stanford,	HoloClean]	
	
-	data	integration	
	
-	schema	design	
	



-	physical	design	including	index	selection	[we	did	that	using	reinforcement	learning,	still	
fiddling	around	with	that]	
	
-	knob	tuning,	a	fully	automatic	DBA,	"self-driving	DBA"	[see	Pavlo	work,	our	own	ongoing	
stuff]	
	
-	DBMS	installation	and	setup,	parallel	setups	
	
-	DBMS	maintenance,	bug	fixing,	trouble	shooting	
	
-	DBMS	security,	threat	prevention,	mitigation,	and	counter	measures	
	
-	DBMS	performance	analysis	and	debugging	
	
-	DBMS	calibration	to	hardware	
	
-	again:	everything	currently	done	by	humans:	DBAs	and	consultants	
	
trying	to	automate	these	things	is	not	a	new	idea	(some	of	this	was	researched	30	years	ago	
already)	
	
but	these	things	should	be	revisited	in	the	light	of	deep	learning	
	
--	
	
another	option	is	to	look	at	functions	like	
	
f(dataset,	attribute)	=	Index	structure	

	
So,	given	a	dataset,	and	an	attribute,	learn	a	suitable	index.	
	
	
Indexes	are	currently	implemented	and	run	by	machines	super	well	already.	
	
indexes	are	lightning	fast,	tons	of	research,	insane	performance:	>10	million	operations	per	
second	and	thread	
	
---	
	
	
**	"The	Case	for	Learned	Indexes	[Kraska	et	al]"	
	
	
**	Idea	of	LI:	
	
-	observation:	in	an	index,	a	KEY	predicts	the	physical	position	of	a	VALUE	
	
-	so	why	not	treat	indexing	as	a	regression	problem,	e.g.	



	
-[	screenshot	from	paper]	

	
-	the	index	IS	the	model	
	
-	we	want	to	have	a	function	f(KEY)	=	physical	location	of	the	VALUE		
	
-	the	index	_predicts_	the	physical	location	of	a	VALUE	
	
-	so	we	train	a	model	
	
-	f(dataset,	attribute)	=	Index	structure	
	
-	learn	cumulative	density	function	(CDF)	
	
-	learn	maximum	error	during	training	to	guarantee	correctness	for	testing	
	
	
in	more	detail:	
	
-	train	a	model	(deep	learning	in	this	case)	to	learn	the	data	distribution	of	a	particular	
attribute	
	
-	author's	observation:	predictions	(e.g.	index	lookups)	too	slow	in	tensorflow	
	
-	therefore	generate	C++-index	code	based	on	the	trained	model	
	
-	eventually	use	a	hybrid	structure,	e.g.	a	model	that	is	recursively	refined	
	
-	so	far	read-only	structures	only,	no	inserts/updates	
	
-	authors	discuss	B-trees,	hash	tables,	and	bitmap	indexes	
	
-	extensions	to	multiple	dimensions	planned	
	
	
**	result	summary:	
	
show	something	from	the	paper	

	
-	performance	of	the	learned	indexes	in	the	same	ballpark	as	main-memory	optimized	
indexes	
	
-	but:	memory	footprint	much	better	(~2	orders	of	magnitude)	
	
	
**	A	Criticism	of	"Learned	Indexes"	**	

	



Let’s	be	precise	here:	
	
**	A	Positive	Criticism	of	"Learned	Indexes"	**	

	
nice	high-level	observation:	
	

-	"an	index	predicts	the	position	of	a	value"	

	

-	"an	index	is	a	model"	

	

-	a	paper	that	stirs	discussion	(we	need	much	of	this	at	SIGMOD/VLDB)	rather	than	super-
polished	(possibly)	incremental	papers	
	
-	Food	for	thought	

	

we	need	more	of	these	kind	of	controversial	papers,	much	better	than	some	super-polished	
paper!	
	
	
**	Some	Constructive	Criticism	of	"Learned	Indexes"	**	

	
I	am	not	the	first	to	criticize	this	work,	see	blog	articles	by	Thomas	Neumann,	TUM	and	the	
Stanford	DAWN	group.	The	LI	work	has	pros	and	cons	(as	any	work).	
	
some	thoughts...	
	
	
**Trees	vs	Models**	

	
[show	B-tree]	
	
every	node	in	a	tree/trie	is	a	model	of	the	data	underneath	anyways,		
	
not	only	the	entire	B-	or	whatever	tree	is	a	model,	every	node	is	already	a	model	
	
this	is	a	somewhat	old	observation	
	
B-trees	are	already	regression	trees	(as	mentioned	in	the	talk)	
	
But	also:	each	node	in	a	tree	is	a	model!	
	
	
**	coarse-granular/sparse	indexes/hybrid	indexes	**	

	
	
[show	one-level	tree]	

	

[show	two-level	tree]	



	
this	is	recursive	modeling	of	the	data!	
	
hybrid	figure	from	paper		
	
a	b-tree	is	NOT	a	black-box	model	(as	claimed	in	the	talk),	it	is	white-box	
	
a	b-tree	is	a	model	of	a	model	of	a	model,	each	node	and	even	the	leaves	in	a	sparse	tree	are	
models!	
	
has	been	known	and	exploited	for	long	
	
e.g.	bulkloading,	(co-)partitioning,	any	technique	using	data	distribution	for	tuning,	statistics,	
data	partitioning	for	joins	[e.g.	Mirek	Riedewald's	join	papers	for	instance]	
	
	
This	hybridness	is	also	prominent	in	index	structures	that	adapt	their	node	types	to	the	
particular	distribution	in	a	range,	e.g.	ARTful	index,	or	any	other	multi-level	hybrid	index	
	
	
	
**	Work	on	modeling	the	data	domain	**	

	
histograms,	density	estimation,	any	other	classical	method	to	describe	the	data	distribution,	
entropy-based	encoding,	index	compression,	succinct	trees,	minimal	perfect	hashing,	etc.	
etc.	some	overlap	here,	not	clear	to	me	what	LI	improves	here,	basically	these	are	also	
statistical	learning	methods	
	
	
[show	train/test	graph]	

	
	
#	Example:	decision	trees!	
	
[decision	tree]	

	
trade-off	between	generalization	and	overfitting	very	visible	
	
more	layers:	more	fitting,	eventually	overfitting	[show]	
	
less	layers:	less	fitting	to	the	data,	more	generalization	[show]	
	
sweet	spot	
	
	
	
#	So,	let's	talk	about	A.I.	
	



I	mean	Adaptive	Indexing	of	course.	
	
**	briefly	introduce	[from	Immanuel’s	Damon	2018	paper]	
	
[show	cracking	graphic]	

	

adaptive	indexing	partitions	the	data	according	to	the	search	predicates	found	in	the	queries	
	
**	a	classification	of	tree-based	partitioning	strategies:	

	
tree/trie	

	

tree:	according	to	data	inserts	->	data	distribution	

trie:	according	to	the	domain	of	the	data	inserts	

	
trai/tria	

trai:	according	to	the	query	predicates	->	query	predicate	distribution	

(tria:	according	to	the	domain	of	the	query	predicates)	

	

trie	and	tria	are	typically	more	or	less	the	same	
	
	
adaptive	indexes	LEARN	the	query	predicates	and	partition	the	column	according	like	that	
	
standard	cracking	is	a	trai!	

	

stochastic	cracking	is	a	blend	of	a	trai	and	a	trie!	A	traiie?	(just	kidding)	
	
many	methods	in-between,	but	all	about	LEARNING	the	search	predicates	
	
the	family	of	adaptive	indexing	LEARNS	the	search	predicates	
	
in	contrast,	LI	LEARNs	the	data	distribution	
	
this	relationship	is	unfortunately	not	discussed	at	all	in	the	LI	paper	
	
note	that	there	is	also:	"Adaptive	Adaptive	indexing	[Schuhknecht	et	al	ICDE	2018]"	
	
	
	
**	Code	generation	**	

	
LI	uses	code-generation,	baselines	however	are	off-the-shelf,	not	a	fully	fair	comparison	
	
baselines	should	at	least	be	calibrated	to	the	data	distributions/domains		
	
system	and	code	calibration	correlates	heavily	with	code	generation,	very	vague	bounsdary	
between	the	two	



	
	
**	Repeatability	(in	general)	**	

	
In	general	(from	my	humble	experience):	index	structures	in	main	memory	are	very	sensitive	
to	minor	programming	tricks.	
	
Also	see	our	previous	work	on	indexing:	
	
tree-indexing	[ICDE	2015]	and	hashing:	[PVLDB	2016]	
	
partitioning	[VLDB	2015]	and	cracking	[VLDB	2014,	bpa]	
	
	
	
**	The	insanity	of	evaluating	indexes	in	main	memory	**	[scream]	

	
Change	a	single	code	line,	and	all	of	a	sudden	the	CPU	is	enabled	to	perform	completely	
different	optimizations	
	
e.g.	dependent	vs	independent	statements,	memory	stalls,	parallelization	
	
there	are	tons	of	weird	CPU-tricks/optimizations	that	change	everything,	e.g.	SIMD,	
pipelining,	branch	mis-predictions,	etc.	
	
So,	you	assume	that	your	index	is	fast,	because	you	played	some	clever	algorithmic	trick.	
	
Then	you	find	out	that	the	CPU	just	played	some	dirty	trick	you	were	not	aware	off.	
	
see:	basically,	every	database	on	new	hardware-paper	every	published.	
	
the	theorists	are	kind	of	right	here	(unfortunately,	and	it	hurts	to	say	this	;-)	):	the	complexity	
of	your	index	often	won't	change,	it	is	just	some	constant	that	changes	(which,	however,	
may	be	huge	and	plays	a	role	in	real	life…)	
	
	
	
so,	tiny	little	code	changes	may	lead	to	factors	in	performance	differences	[visual	support,	
maybe	from	DAMON	2018	paper?]	
	
as	LI	are	in	the	same	ballpark	as	state-of-the-art	
	
for	LI,	as	for	any	other	index,	I	believe	it	is	important	to	investigate	whether	these	are	
principal	differences	or	just	due	to	implementation/code	generation	variations	
	
looking	forward	to	repetitions	of	LI	;-)	
	
code	available?	



	
LI	summary:	

	
The	glass	is	half	full:	a	nice	fresh	view	on	indexing,	nice	observations,	food	for	thought	
	
The	glass	is	half	empty:	(still)	some	doubts	on	practicality	of	this	approach,	and	diff	to	
related	work.	
	
	
	
2.)	experiences	from	teaching	<something>	

	
undergrad	seminar	on	"data	science",	teaching	award	from	student’s	council	for	the	best	
seminar	
	
intro	lecture	"Intro	to	Databases"	->	"Intro	to	Data	Science"	(ongoing	this	semester)	
	
syllabus	

	
screenshots	from	the	system	

	
	
slides	
	
problems	
	
	
3.)	experiences	from	solving	problems	in	the	<something>-domain	together	with	domain	

experts.		

	
**	project	with	German	weather	service	(DWD)	
	
	
[some	screen	shot]	

	
idea:	the	bug	is	the	feature	

	

error	in	short	term	weather	forecasts	(nowcating)	->	lightning	prediction	
	
	
nowcasting:	2D	models	
	
background:	thunderstorm:	wind	upward	movement	in	the	cloud	(I	mean	a	real	cloud)	
	
not	modelled	by	nowcasting	
	
hypothesis:	error	in	nowcasting	correlates	to	a	cloud	where	we	will	see	lightning	
		



	
**	data	science	consulting	

	
daimond.ai	

	
~80-90%	relatively	simple	problems,	you	do	not	need	super	fancy	researchy	deep	learning	
stuff	for	that	
	
	
	
	
Executive	Summary:	

	
	
1.	

remind	people	that	we	are	one	third	of	what	people	mean	when	they	say	“data	science”	

	

2.	

We	should	investigate	Software	2.0,	f(X)	=	Y	

	

In	particular,	when	f(X)	is	a	function	currently	implemented	by	humans.	

	

3.		

We	need	to	support	and	push	programs	and	lectures	in	data	science	

	

4.	

get	out	of	your	LAB	and	solve	some	real	problems	
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SELECT A FROM…
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LLVM code

SELECT A FROM…
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~42 ms
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SELECT A FROM…

CREATE index ON A



f(            ) = 
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CREATE index ON A
CREATE index ON D

SELECT A FROM…

SELECT B FROM…

SELECT C FROM… SELECT D FROM…



[VLDB 2017]

Deep Learning 
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CREATE index ON A
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tensorflow…  
code generation… 
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cost to execute a neural net or other ML models might actu-
ally be negligible in the future. For instance, both Nvidia and
Google’s TPUs are already able to perform thousands if not
tens of thousands of neural net operations in a single cycle [3].
Furthermore, it was stated that GPUs will improve 1000× in
performance by 2025, whereas Moore’s law for CPUs is essen-
tially dead [5]. By replacing branch-heavy index structures
with neural networks, databases and other systems can ben-
efit from these hardware trends. While we see the future of
learned index structures on specialized hardware, like TPUs,
this paper focuses entirely on CPUs and surprisingly shows
that we can achieve significant advantages even in this case.

It is important to note that we do not argue to completely re-
place traditional index structures with learned indexes. Rather,
the main contribution of this paper is to outline and
evaluate the potential of a novel approach to build in-
dexes, which complements existing work and, arguably,
opens up an entirely new research direction for a decades-
oldfield.This is based on the key observation thatmanydata
structures can be decomposed into a learnedmodel and
an auxiliary structure to provide the same semantic guaran-
tees. The potential power of this approach comes from the fact
that continuous functions, describing the data distribu-
tion, can be used to build more efficient data structures
or algorithms. We empirically get very promising results
when evaluating our approach on synthetic and real-world
datasets for read-only analytical workloads. However, many
open challenges still remain, such as how to handle write-
heavy workloads, and we outline many possible directions
for future work. Furthermore, we believe that we can use the
same principle to replace other components and operations
commonly used in (database) systems. If successful, the core
idea of deeply embedding learned models into algorithms and
data structures could lead to a radical departure from the way
systems are currently developed.

The remainder of this paper is outlined as follows: In the
next two sections we introduce the general idea of learned
indexes using B-Trees as an example. In Section 4 we extend
this idea to Hash-maps and in Section 5 to Bloom filters. All
sections contain a separate evaluation. Finally in Section 6 we
discuss related work and conclude in Section 7.

2 RANGE INDEX
Range index structure, like B-Trees, are already models: given
a key, they “predict” the location of a value within a key-
sorted set. To see this, consider a B-Tree index in an analytics
in-memory database (i.e., read-only) over the sorted primary
key column as shown in Figure 1(a). In this case, the B-Tree
provides a mapping from a look-up key to a position inside
the sorted array of records with the guarantee that the key
of the record at that position is the first key equal or higher
than the look-up key. The data has to be sorted to allow for
efficient range requests. This same general concept also ap-
plies to secondary indexes where the data would be the list of

BTree

Key

pos

pos - 0 pos + pagezise

……

pos

pos - min_err pos + max_er

……

Model 
(e.g., NN)

(b) Learned Index(a) B-Tree Index
Key

Figure 1: Why B-Trees are models

<key,record_pointer> pairs with the key being the indexed
value and the pointer a reference to the record.1

For efficiency reasons it is common not to index every sin-
gle key of the sorted records, rather only the key of every
n-th record, i.e., the first key of a page. Here we only assume
fixed-length records and logical paging over a continuous
memory region, i.e., a single array, not physical pages which
are located in different memory regions (physical pages and
variable length records are discussed in Appendix D.2). In-
dexing only the first key of every page helps to significantly
reduce the number of keys the index has to store without any
significant performance penalty. Thus, the B-Tree is a model,
or in ML terminology, a regression tree: it maps a key to a
position with a min- and max-error (a min-error of 0 and a
max-error of the page-size), with a guarantee that the key
can be found in that region if it exists. Consequently, we can
replace the index with other types of ML models, including
neural nets, as long as they are also able to provide similar
strong guarantees about the min- and max-error.

At first sight it may seem hard to provide the same guar-
antees with other types of ML models, but it is actually sur-
prisingly simple. First, the B-Tree only provides the strong
min- and max-error guarantee over the stored keys, not for all
possible keys. For new data, B-Trees need to be re-balanced,
or in machine learning terminology re-trained, to still be able
to provide the same error guarantees. That is, for monotonic
models the only thing we need to do is to execute the model for
every key and remember the worst over- and under-prediction
of a position to calculate the min- and max-error.2 Second, and
more importantly, the strong error bounds are not even needed.
The data has to be sorted anyway to support range requests,
so any error is easily corrected by a local search around the
prediction (e.g., using exponential search) and thus, even al-
lows for non-monotonic models. Consequently, we are able
to replace B-Trees with any other type of regression model,
including linear regression or neural nets (see Figure 1(b)).

Now, there are other technical challenges that we need to
address before we can replace B-Trees with learned indexes.
For instance, B-Trees have a bounded cost for inserts and
1Note, that against some definitions for secondary indexes we do not consider
the <key,record_pointer> pairs as part of the index; rather for secondary
index the data are the <key,record_pointer> pairs. This is similar to how
indexes are implemented in key value stores [12, 21] or how B-Trees on modern
hardware are designed [44].
2The model has to be monotonic to also guarantee the min- and max-error for
look-up keys, which do not exist in the stored set.
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Figure 3: Staged models

Mℓ models. We train the model at stage 0, f0(x ) ≈ y. As such,
model k in stage ℓ, denoted by f (k )

ℓ
, is trained with loss:

Lℓ =
∑
(x,y )

(f (⌊Mℓ fℓ− 1(x )/N ⌋)
ℓ (x ) − y)2 L0 =

∑
(x,y )

(f0(x ) − y)2

Note, we use here the notation of fℓ− 1(x) recursively exe-
cuting fℓ− 1(x ) = f

( ⌊Mℓ− 1fℓ− 2(x )/N ⌋)
ℓ− 1 (x ). In total, we iteratively

train each stage with loss Lℓ to build the complete model.
One way to think about the different models is that each

model makes a prediction with a certain error about the po-
sition for the key and that the prediction is used to select the
next model, which is responsible for a certain area of the key-
space to make a better prediction with a lower error. However,
recursive model indexes do not have to be trees. As shown in
Figure 3 it is possible that different models of one stage pick
the same models at the stage below. Furthermore, each model
does not necessarily cover the same amount of records like
B-Trees do (i.e., a B-Tree with a page-size of 100 covers 100
or less records).4 Finally, depending on the used models the
predictions between the different stages can not necessarily
be interpreted as positions estimates, rather should be consid-
ered as picking an expert which has a better knowledge about
certain keys (see also [62]).

This model architecture has several benefits: (1) It separates
model size and complexity from execution cost. (2) It leverages
the fact that it is easy to learn the overall shape of the data
distribution. (3) It effectively divides the space into smaller sub-
ranges, like a B-Tree, to make it easier to achieve the required
“last mile” accuracy with fewer operations. (4) There is no
search process required in-between the stages. For example,
the output ofModel 1.1 is directly used to pick the model in the
next stage. This not only reduces the number of instructions to
manage the structure, but also allows representing the entire
index as a sparse matrix-multiplication for a TPU/GPU.
3.3 Hybrid Indexes
Another advantage of the recursive model index is, that we
are able to build mixtures of models. For example, whereas on
the top-layer a small ReLU neural net might be the best choice
as they are usually able to learn a wide-range of complex data
distributions, the models at the bottom of the model hierarchy
might be thousands of simple linear regression models as they
are inexpensive in space and execution time. Furthermore, we
4Note, that we currently train stage-wise and not fully end-to-end. End-to-end
training would be even better and remains future work.

can even use traditional B-Trees at the bottom stage if the data
is particularly hard to learn.

For this paper, we focus on 2 types of models, simple neural
nets with zero to two fully-connected hidden layers and ReLU
activation functions and a layer width of up to 32 neurons
and B-Trees (a.k.a. decision trees). Note, that a zero hidden-
layer NN is equivalent to linear regression. Given an index
configuration, which specifies the number of stages and the
number of models per stage as an array of sizes, the end-to-end
training for hybrid indexes is done as shown in Algorithm 1

Algorithm 1: Hybrid End-To-End Training
Input: int threshold, int stages[], NN_complexity
Data: record data[], Model index[][]
Result: trained index

1 M = stages.size;
2 tmp_records[][];
3 tmp_records[1][1] = all_data;
4 for i ← 1 to M do
5 for j ← 1 to staдes[i] do
6 index[i][j] = new NN trained on tmp_records[i][j];
7 if i < M then
8 for r ∈ tmp_records[i][j] do
9 p = index[i][j](r .key) / stages[i + 1];

10 tmp_records[i + 1][p].add(r );
11 for j ← 1 to index [M].size do
12 index[M ][j].calc_err(tmp_records[M ][j]);
13 if index [M][j].max_abs_err > threshold then
14 index[M ][j] = new B-Tree trained on tmp_records[M ][j];
15 return index;

Starting from the entire dataset (line 3), it trains first the top-
node model. Based on the prediction of this top-node model, it
then picks the model from the next stage (lines 9 and 10) and
adds all keys which fall into that model (line 10). Finally, in
the case of hybrid indexes, the index is optimized by replacing
NN models with B-Trees if absolute min-/max-error is above
a predefined threshold (lines 11-14).

Note, that we store the standard and min- and max-error
for every model on the last stage. That has the advantage,
that we can individually restrict the search space based on
the used model for every key. Currently, we tune the various
parameters of the model (i.e., number of stages, hidden layers
per model, etc.) with a simple simple grid-search. However,
many potential optimizations exists to speed up the training
process from ML auto tuning to sampling.

Note, that hybrid indexes allow us to bound theworst
case performance of learned indexes to the performance
of B-Trees. That is, in the case of an extremely difficult to
learn data distribution, all models would be automatically re-
placed by B-Trees, making it virtually an entire B-Tree.
3.4 Search Strategies and Monotonicity
Range indexes usually implement anupper_bound(key) [lower_
bound(key)] interface to find the position of the first keywithin
the sorted array that is equal or higher [lower] than the look-
up key to efficiently support range requests. For learned range
indexes we therefore have to find the first key higher [lower]
from the look-up key based on the prediction. Despite many
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Figure 4: Learned Index vs B-Tree

contains very complex time patterns caused by class sched-
ules, weekends, holidays, lunch-breaks, department events,
semester breaks, etc., which are notoriously hard to learn. For
the maps dataset we indexed the longitude of ≈ 200M user-
maintained features (e.g., roads, museums, coffee shops) across
the world. Unsurprisingly, the longitude of locations is rela-
tively linear and has fewer irregularities than the Weblogs
dataset. Finally, to test how the index works on heavy-tail dis-
tributions, we generated a synthetic dataset of 190M unique
values sampled from a log-normal distribution with µ = 0
and σ = 2. The values are scaled up to be integers up to 1B.
This data is of course highly non-linear, making the CDF more
difficult to learn using neural nets. For all B-Tree experiments
we used 64-bit keys and 64-bit payload/value.

As our baseline, we used a production quality B-Tree imple-
mentation which is similar to the stx::btree but with further
cache-line optimization, dense pages (i.e., fill factor of 100%),
and very competitive performance. To tune the 2-stage learned
indexes we used simple grid-search over neural nets with zero
to two hidden layers and layer-width ranging from 4 to 32
nodes. In general we found that a simple (0 hidden layers) to
semi-complex (2 hidden layers and 8- or 16-wide) models for
the first stage work the best. For the second stage, simple, lin-
ear models, had the best performance. This is not surprising as
for the last mile it is often not worthwhile to execute complex
models, and linear models can be learned optimally.

Learned Index vs B-Tree performance: The main re-
sults are shown in Figure 4. Note, that the page size for B-Trees
indicates the number of keys per page not the size in Bytes,
which is actually larger. As the main metrics we show the size
in MB, the total look-up time in nano-seconds, and the time to
execution the model (either B-Tree traversal or ML model) also
in nano-seconds and as a percentage compared to the total
time in paranthesis. Furthermore, we show the speedup and
space savings compared to a B-Tree with page size of 128 in
parenthesis as part of the size and lookup column. We choose
a page size of 128 as the fixed reference point as it provides
the best lookup performance for B-Trees (note, that it is al-
ways easy to save space at the expense of lookup performance
by simply having no index at all). The color-encoding in the
speedup and size columns indicates howmuch faster or slower
(larger or smaller) the index is against the reference point.

As can be seen, the learned index dominates the B-Tree
index in almost all configurations by being up to 1.5 − 3×

faster while being up to two orders-of-magnitude smaller. Of
course, B-Trees can be further compressed at the cost of CPU-
time for decompressing. However, most of these optimizations
are orthogonal and apply equally (if not more) to neural nets.
For example, neural nets can be compressed by using 4- or
8-bit integers instead of 32- or 64-bit floating point values
to represent the model parameters (a process referred to as
quantization). This level of compression can unlock additional
gains for learned indexes.

Unsurprisingly the second stage size has a significant im-
pact on the index size and look-up performance. Using 10,000
or more models in the second stage is particularly impressive
with respect to the analysis in §2.1, as it demonstrates that our
first-stage model can make a much larger jump in precision
than a single node in the B-Tree. Finally, we do not report on
hybrid models or other search techniques than binary search
for these datasets as they did not provide significant benefit.

Learned Index vs Alternative Baselines: In addition to
the detailed evaluation of learned indexes against our read-
optimized B-Trees, we also compared learned indexes against
other alternative baselines, including third party implementa-
tions. In the following, we discuss some alternative baselines
and compare them against learned indexes if appropriate:

Histogram: B-Trees approximate the CDF of the underlying
data distribution. An obvious question is whether histograms
can be used as a CDF model. In principle the answer is yes,
but to enable fast data access, the histogram must be a low-
error approximation of the CDF. Typically this requires a large
number of buckets, which makes it expensive to search the
histogram itself. This is especially true, if the buckets have
varying bucket boundaries to efficiently handle data skew,
so that only few buckets are empty or too full. The obvious
solutions to this issues would yield a B-Tree, and histograms
are therefore not further discussed.

Lookup-Table: A simple alternative to B-Trees are (hierar-
chical) lookup-tables. Often lookup-tables have a fixed size
and structure (e.g., 64 slots for which each slot points to an-
other 64 slots, etc.). The advantage of lookup-tables is that
because of their fixed size they can be highly optimized using
AVX instructions. We included a comparison against a 3-stage
lookup table, which is constructed by taking every 64th key
and putting it into an array including padding to make it a
multiple of 64. Then we repeat that process one more time over
the array without padding, creating two arrays in total. To
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 61
2.5 Gradient Boosting

Gradient Boosting ist ein weiterer Algorithmus, der basierend auf einem ersten Decision Tree
Modell versucht, in weiteren Iterationen den Fehler immer weiter zu minimieren, nutzt dabei
aber einen leicht anderen Ansatz als das AdaBoost Verfahren im letzen Abschnitt. Die Para-
meter sind im Vergleich zu den vorherigen Experimenten wieder unverändert. Das Ergebnis
kann zwischen den Werten des Random Forest und denen des AdaBoost Verfahrens angesiedelt
werden.
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∑ executive summary
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1. 
remind people that we are one third of what people mean when they 
say “data science” 

2. 
We should investigate Software 2.0. 
In particular, when f(X) is a function currently implemented by 
humans. 

3.  
We need to support and push programs and lectures in data science 

4. 
get out of your LAB and solve some real problems
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