Data Science # Machine Learning: Some Thoughts on the Role of
Data Management in the new Al-Tsunami

Jens Dittrich
Saarland Informatics Campus

Talk Manuscript for my Keynote at DEEM Workshop at SIGMOD 2018
(accompanied by slides, scroll down for slides)

will post it on http://twitter.com/jensdittrich

Prelude: Buzzword Bullshit Bingo

Buzzword [People not understanding each other]

<something>

[Babel tower,

https://en.wikipedia.org/wiki/Tower_of_Babel#/media/File:Pieter_Bruegel_the_Elder_-
_The_Tower_of_Babel_(Vienna)_-_Google_Art_Project.jpg]

The political game [parliament]

Data Science vs Machine Learning
clarify term "data science" [slides from intro lecture]
data science pipeline
where is data management in that pipeline?
similarities with DWH
show different topics
mention projects,
DAWN
HoloClean
Spark, Flink

tons of exciting work going on at this workshop and aiDM, thumbs up, guys!



1.) opportunities for doing research at the intersection of <something> and data
management,

Software 2.0, Andrey Karpathy

Where this leads to is:

f(X)=Y

software is many of those functions

RNNs are turing complete

In principle any function could be learned by some model

In principle...

which are suitable functions to investigate?

f(X)=Y

f("SELECT * FROM ...") = [table]

f("SELECT * FROM ...") = [cost estimate]

f("SELECT * FROM ...") = {suitable indexes}

f("SELECT * FROM A", "SELECT * FROM B", "SELECT * FROM ...") = {suitable indexes}
f("SELECT * FROM ...") = [LLVM bit code]

basically, any language translation

Software 2.0: finding out which functions to replace with learned functions
| briefly spoke about this in my VLDB 2017 keynote [title slide]
suitable candidates for functions are in general:

everything that is currently done by humans:

- data cleaning [Stanford, HoloClean]

- data integration

- schema design



- physical design including index selection [we did that using reinforcement learning, still
fiddling around with that]

- knob tuning, a fully automatic DBA, "self-driving DBA" [see Pavlo work, our own ongoing
stuff]

- DBMS installation and setup, parallel setups

- DBMS maintenance, bug fixing, trouble shooting

- DBMS security, threat prevention, mitigation, and counter measures
- DBMS performance analysis and debugging

- DBMS calibration to hardware

- again: everything currently done by humans: DBAs and consultants

trying to automate these things is not a new idea (some of this was researched 30 years ago
already)

but these things should be revisited in the light of deep learning

another option is to look at functions like
f(dataset, attribute) = Index structure

So, given a dataset, and an attribute, learn a suitable index.

Indexes are currently implemented and run by machines super well already.

indexes are lightning fast, tons of research, insane performance: >10 million operations per
second and thread

** "The Case for Learned Indexes [Kraska et al]"

** |dea of LI:
- observation: in an index, a KEY predicts the physical position of a VALUE

- so why not treat indexing as a regression problem, e.g.



-[ screenshot from paper]

- the index IS the model

- we want to have a function f(KEY) = physical location of the VALUE
- the index _predicts_ the physical location of a VALUE

- so we train a model

- f(dataset, attribute) = Index structure

- learn cumulative density function (CDF)

- learn maximum error during training to guarantee correctness for testing

in more detail:

- train a model (deep learning in this case) to learn the data distribution of a particular
attribute

- author's observation: predictions (e.g. index lookups) too slow in tensorflow
- therefore generate C++-index code based on the trained model

- eventually use a hybrid structure, e.g. a model that is recursively refined

- so far read-only structures only, no inserts/updates

- authors discuss B-trees, hash tables, and bitmap indexes

- extensions to multiple dimensions planned

** result summary:
show something from the paper

- performance of the learned indexes in the same ballpark as main-memory optimized
indexes

- but: memory footprint much better (~2 orders of magnitude)

** A Criticism of "Learned Indexes" **



Let’s be precise here:

** A Positive Criticism of "Learned Indexes" **
nice high-level observation:

- "an index predicts the position of a value"

- "an index is a model"

- a paper that stirs discussion (we need much of this at SIGMOD/VLDB) rather than super-
polished (possibly) incremental papers

- Food for thought

we need more of these kind of controversial papers, much better than some super-polished
paper!

** Some Constructive Criticism of "Learned Indexes" **

I am not the first to criticize this work, see blog articles by Thomas Neumann, TUM and the
Stanford DAWN group. The LI work has pros and cons (as any work).

some thoughts...

**Trees vs Models**

[show B-tree]

every node in a tree/trie is a model of the data underneath anyways,

not only the entire B- or whatever tree is a model, every node is already a model
this is a somewhat old observation

B-trees are already regression trees (as mentioned in the talk)

But also: each node in a tree is a model!

** coarse-granular/sparse indexes/hybrid indexes **

[show one-level tree]

[show two-level tree]



this is recursive modeling of the data!
hybrid figure from paper
a b-tree is NOT a black-box model (as claimed in the talk), it is white-box

a b-tree is a model of a model of a model, each node and even the leaves in a sparse tree are
models!

has been known and exploited for long
e.g. bulkloading, (co-)partitioning, any technique using data distribution for tuning, statistics,

data partitioning for joins [e.g. Mirek Riedewald's join papers for instance]

This hybridness is also prominent in index structures that adapt their node types to the
particular distribution in a range, e.g. ARTful index, or any other multi-level hybrid index

** Work on modeling the data domain **
histograms, density estimation, any other classical method to describe the data distribution,
entropy-based encoding, index compression, succinct trees, minimal perfect hashing, etc.

etc. some overlap here, not clear to me what LI improves here, basically these are also
statistical learning methods

[show train/test graph]

# Example: decision trees!

[decision tree]

trade-off between generalization and overfitting very visible
more layers: more fitting, eventually overfitting [show]

less layers: less fitting to the data, more generalization [show]

sweet spot

# So, let's talk about A.l.



| mean Adaptive Indexing of course.

** briefly introduce [from Immanuel’s Damon 2018 paper]

[show cracking graphic]

adaptive indexing partitions the data according to the search predicates found in the queries
** a classification of tree-based partitioning strategies:

tree/trie

tree: according to data inserts -> data distribution
trie: according to the domain of the data inserts

trai/tria
trai: according to the query predicates -> query predicate distribution

(tria: according to the domain of the query predicates)

trie and tria are typically more or less the same

adaptive indexes LEARN the query predicates and partition the column according like that
standard cracking is a trai!

stochastic cracking is a blend of a trai and a trie! A traiie? (just kidding)

many methods in-between, but all about LEARNING the search predicates

the family of adaptive indexing LEARNS the search predicates

in contrast, LI LEARNs the data distribution

this relationship is unfortunately not discussed at all in the LI paper

note that there is also: "Adaptive Adaptive indexing [Schuhknecht et al ICDE 2018]"

** Code generation **
LI uses code-generation, baselines however are off-the-shelf, not a fully fair comparison
baselines should at least be calibrated to the data distributions/domains

system and code calibration correlates heavily with code generation, very vague bounsdary
between the two



** Repeatability (in general) **

In general (from my humble experience): index structures in main memory are very sensitive
to minor programming tricks.

Also see our previous work on indexing:
tree-indexing [ICDE 2015] and hashing: [PVLDB 2016]

partitioning [VLDB 2015] and cracking [VLDB 2014, bpa]

** The insanity of evaluating indexes in main memory ** [scream]

Change a single code line, and all of a sudden the CPU is enabled to perform completely
different optimizations

e.g. dependent vs independent statements, memory stalls, parallelization

there are tons of weird CPU-tricks/optimizations that change everything, e.g. SIMD,
pipelining, branch mis-predictions, etc.

So, you assume that your index is fast, because you played some clever algorithmic trick.
Then you find out that the CPU just played some dirty trick you were not aware off.

see: basically, every database on new hardware-paper every published.

the theorists are kind of right here (unfortunately, and it hurts to say this ;-) ): the complexity

of your index often won't change, it is just some constant that changes (which, however,
may be huge and plays a role in real life...)

so, tiny little code changes may lead to factors in performance differences [visual support,
maybe from DAMON 2018 paper?]

as Ll are in the same ballpark as state-of-the-art

for LI, as for any other index, | believe it is important to investigate whether these are
principal differences or just due to implementation/code generation variations

looking forward to repetitions of LI ;-)

code available?



LI summary:
The glass is half full: a nice fresh view on indexing, nice observations, food for thought

The glass is half empty: (still) some doubts on practicality of this approach, and diff to
related work.

2.) experiences from teaching <something>

undergrad seminar on "data science", teaching award from student’s council for the best
seminar

intro lecture "Intro to Databases" -> "Intro to Data Science" (ongoing this semester)
syllabus

screenshots from the system

slides

problems

3.) experiences from solving problems in the <something>-domain together with domain
experts.

** project with German weather service (DWD)

[some screen shot]
idea: the bug is the feature

error in short term weather forecasts (nowcating) -> lightning prediction

nowcasting: 2D models
background: thunderstorm: wind upward movement in the cloud (I mean a real cloud)
not modelled by nowcasting

hypothesis: error in nowcasting correlates to a cloud where we will see lightning



** data science consulting
daimond.ai

~80-90% relatively simple problems, you do not need super fancy researchy deep learning
stuff for that

Executive Summary:

1.
remind people that we are one third of what people mean when they say “data science”

2.
We should investigate Software 2.0, f(X) = Y

In particular, when f(X) is a function currently implemented by humans.

3.
We need to support and push programs and lectures in data science

4,
get out of your LAB and solve some real problems



Data Science # Machine Learning

Some Thoughts on the Role of Data
Management in the new Al-Tsunami

Jens Dittrich
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twitter.com/jensdittrich
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Prelude:
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Data
Science!

ML!
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http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Data Science
VS
Machine Learning
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Data Science

Data Mining

Math

Programming




The Data Science Cake

Ingredients:

509 statistics

1209 linear algebra
200g programming
1kg visualisation
3009 software
engineering

twitter.com/jensdittrich

Additional skills:
creativity

out of the box thinking
grit

team spirit

© istock.com sasilsolutions
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Opportunities

<something>




Software 2.0









SELECT A FROM...

22



SELECT A FROM...

LLVM code

23



SELECT A FROM...

~42 ms

24



SELECT A FROM...

CREATE index ON A

23



SELECT A FROM...

SELECT C FROM...

SELECT B FROM...

/

—  CREATE index ON A
CREATE index ON D

SELECT D FROM...

26



'VLDB 2017]

Deep Learning
(m)eats Databases

Jens Dittrich

Saarland University
Saarland Informatics Campus
d:Al:mond.al










CREATE index ON A

© istock.com rastan
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The Case for
L earned Indexes

[Kraska et al]




CREATE index ON A

32



CREATE index ON A

f(

tensorflow...
code generation...




[Kraska et al]

(a) B-Tree Index (b) Learned Index
Key Key

v v

Model
BTree (e.g., NN)

pos\ pos
pos - 0 pos + pagezise pOS - min_err pOS + max_er

Figure 1: Why B-Trees are models



Stage 2 Stage 1

Stage 3

J Key

Model 1.1

m

Model 2.1 Model 2.2 Model 2.3

o N o e

Model 3.1

Model 3.2 Model 3.3

Position

Figure 3: Staged models

Model 3.4

[Kraska et al]



[Kraska et al]

Log-Normal Data
Type Config Size (MB) |JLookup (ns)] Model (ns) | Size (MB) |Lookup (ns)] Model (ns) | Size (MB) JLookup (ns)] Model (ns)

page size: 32 52.45 (4.00x)] 274 (0.97x)] 198 (72.3%)| 51.93 (4.00x)| 276 (0.94x)] 201 (72.7%)| 49.83 (4.00x)|274 (0.96x)] 198 (72.1%)
page size: 256 6.56 (o 50x) 267 (o 99x) 114 (42 7% 6.49 (o 50x) 266 (0 98x) 114 (42 9% 6.23 (o 50x) 271 (o 97x) 117 (43 2%
29 (13 1%
36 (22.2%)

Learned | 2nd stage models: 0.15 (O O1x)] 98 (2 70x)] 31 (31 6%
Index |[2nd stage models: 0.76 (0.06x)] 85 (3.11x)] 39 (45.9%)

0.15 (0. le) 222 (1 17x)
0.76 (0.06x)| 162 (1.60x)
1.53 (0.12x)]| 144 (1.81x)
3.05 (0.24x)| 126 (2.07x)

0.15 (O 01x)1178 (1. 47x)
0.76 (0.06x)]162 (1.62x)
1.53 (0.12x)}152 (1.73x)
3.05 (0.24x)]1146 (1.79x)

26 (14 6%
35 (21.6%)

2nd stage models: 1.53 (0.12x)] 82 (3.21x)] 41 (50.2%)
2nd stage models: 3.05 (0.23x)] 86 (3.08x)] 50 (58.1%)

39 (26.9%)
41 (32.5%)

36 (23.7%)
40 (27.6%)

Figure 4: Learned Index vs B-Tree
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Coarse-granular and Sparse B-Trees
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Coarse-granular and Sparse B-Trees

(60:123]



Coarse-granular and Sparse B-Trees
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Coarse-granular and Sparse B-Trees
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Adaptive Indexing



Column A

33
16
93
23
30
48
49
13
68

Q1: ... where A< 67

crack-in-two

kernel

Column A

after Q1

30
93

67 <=A

Q2: ... where A> 35

crack-in-two
kernel

Column A
> after Q2

13
16
23

48
49
38

638
30
93

35 <A<067 A<=35

67 <=A



tree

A

68

0 .25 S 75 L

partition the data

o 'm

0 .25 D 75 L

partition the predicates

trai

trie

e i

0 .25 O 75 1

partition the dataspace

tria

~same as trie

partition the predicate space



Adaptive Indexing

learns the search predicates
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The difficulty of
measuring stuff in
main memory...

51
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(still) some doubts on

«—  practicality of this approach,

and diff to related work.

a nice fresh view on
Indexing, nice observations,
food for thought
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experience from
teaching Data Science




Materialien

1. Vorlesungen

O1a EinflUhrung (1.9 MB)

01b EinfUhrung (464 KB)

02 Bug Data Analytics (1.4 MB)

03a Relationales Modell und Algebra (1.9 MB)
03b Zusétzliche Beispiele fur abgeleitete Operatoren (159 KB)
04 Datenbanken (276 KB)

05 Data Exploration (2.3 MB)

06 Statistik (26 MB)

07 MapReduce & Apache Spark (1.1 MB)

08 Lineare Regression (2.7 MB)

09 Klassifizierung (4.9 MB)

10 Entscheidungsbdume (672 KB)

11 Neural Networks (5.2 MB)

12 Clustering (4.5 MB)

2. Notebooks

02 Data Cleaning (137 KB)

03 Relationale Algebra (12 KB)

04 SQL (19KB)

07 Spark (13 KB)

10 Entscheidungsbdume (6.0 KB)

11 Neural Networks (2.1 MB)



@ - A ® {@ localhost:8888/notebooks/notebooks/02 Data Cleaning.ipynb 110% e O {}’ ‘O\ Suchen ’ )\ O S =
'A. .
= JUther 02 Data Cleaning Last Checkpoint: 12.04.2018 (unsaved changes) ﬁ Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 O
m 4+ < @ B 4 & MRun B C W Code o= e

IR RIRILL~]} v v v v v v v v v v v v v v v v “

In [30]: # bedingte Einfdrbung der Zellen des DataFrames:
linksPivot.style.apply(lambda x: ["background: orange" if v >= 42 else "background: lightgreen" if v > 0 else

for v .

Out[30]:

Sci-
Fi

target Action Adventure Animation Biography Comedy Crime Drama Family Fantasy History Horror Music Musical Mystery Romance Sporl

source

Action

Adventure

Animation
Biography
Comedy

| N

Crime
Drama

Family

Fantasy

o O o o o

o
o
o
o
o
o
o
o
(@)

History

Horror

o O O O O o O o o o

Music
Musical
Mystery

Romance

Sci-Fi

o O O O O O O O O o O o o o o o
o O O O O O O O O o o o o o o
o O O O O o o o o o o o

o O O O O O O o o o o o

o O O O O o o o o o

o O O O o o o o o

o O O O o o o
o o O o o

o O O O o o o
o O o O o o o
o O O o o o o

Thriller

In [31]: # die obige Visualisierung fiihrt auf natiirliche Weise zu einer Heatmap:
plt.subplots(figsize=(15,15))
sns.heatmap(linksPivot, cmap=sns.color palette("Greens", 42),annot=True)

Outl3l]s <matilotlib.axes. subilots.AxesSubilot at 0x1128ddb38>




experiences from solving real
data science problems with
domain experts




® & https://bigdata.uni-saarland.de/predictweather/ ee O % Suchen v\ &N

TEAM RESEARCH PROTOTYPE CONTACT

WEATHER PREDICTION

USING DEEP LEARNING
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iIdea: the bug is the
feature



2D nowcasting error

~w

lightning prediction



True label

AdaBoost Confusion matrix

no strike

strike 4

27589 (0.80) 4558 (0.14)

4301 (0.13) 27846 (0.87)

Predicted label
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15000

10000
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D:Al:MOND DATA SCIENCE CONSULTING Potenzialanalyse Projektrealisierung Team Kontakt Blog

Alle reden uber Data Science. Aber
was bedeutet das fur mein
Unternehmen?

BRINGEN SIE DATA SCIENCE IN IHR

UNTERNEHMEN

Als Data Science Consulting helfen wir Ihnen Mehrwerte aus ihren Daten zu schopfen und dadurch mehr Effizienz, Transparenz und Struktur
in ihr Unternehmen zu bringen. Dadurch konnen Sie sich Wettbewerbsvorteile sichern. Produktionsketten effizienter gestalten, neue




executive summary



1.
remind people that we are one third of what people mean when they

say “data science”

2.
We should investigate Software 2.0.
In particular, when f(X) is a function currently implemented by

humans.

3.
We need to support and push programs and lectures in data science

4.
get out of your LAB and solve some real problems




